
2024-04-13-Notations For Programming 

Choose Your Weapon	 
2
What else might you want to do with REMs?	 
2
Use both (or more) notations where appropriate	 
2
Best of all worlds	 
2
Observation	 
3
What is needed	 
4
Appendix - See Also	 6

1



Choose Your Weapon

If you simply want to compute x = sin(theta) then you should use functional 
notation (incl. preemption) and TPLs (Textual Programming Languages).


But, if you want to do more with REMs (Reprogrammable Electronic Machines 
(aka "computers")), do not use functional notation and avoid the overhead of 
preemption (and associated TRAPs and extra management software, etc.)


What else might you want to do with REMs?

What might you want to do with a REM that doesn’t involve building yet another 
calculator?


• Internet


• GUIs


• Robotics


• Blockchain


• Sequencing, iMovie


• etc.


Use both (or more) notations where appropriate

Function-based programming - which includes FP , but, is not restricted to FP - 1

is a simplifying assumption that allows programmers to use mathematical notation 
mapped onto hardware. 


There are other ways to use hardware other than for creating more-and-more 
complicated calculators. Other kinds of notations are better suited to those other 
kinds of uses.


Best of all worlds

In the best of all worlds, we would use hybrid notations that include functional 
notation and other notations that are more suited to problems-at-hand.


 FP means Functional Programming1

2



An example might be blockchain. When viewed as a hybrid of technologies, 
blockchain is quite simple:


1. Cryptography (heavy math)


2. State-tracking protocols (very simple state machines).


Blockchain technology tries to foil adversaries by chopping up cryptographic 
compute-ations into small, time-sequenced pieces, aka “states”. Attempts to 
express both parts of the hybrid technology using only a single notation - that of 
written mathematics - leads to accidental complexity, especially in the state-
sequencing code. 


When expressed in 2D, time-less mathematical notation, state-sequencing 
appears to be horribly complicated. When expressed as hand-drawn bubbles on 
a napkin in a diner, state-sequencing appears to be childishly simple. It is 
possible to use a bubble-based notation, e.g. StateCharts, to express state-
sequencing in programs in a simple manner.


Cryptographic aspects of blockchain require high-fallutin’ mathematics, but, time-
sequencing operations do not require high-fallutin’ mathematics.


Observation

Function-based notations are clunky when one wants to express control flow. At 
present, we use ad-hoc, unstructured forms of function-based notation that mis-
uses COND combined with variables (aka "state"). 


This mis-use of function-based notation - stretching function-based notation 
beyond its sweet spot - leads to hoary bugs in code.


"State" is "bad" when you simply want to compute the value of an equation, but, 
"state" is not necessarily "bad" when you want to do other things.


Programmers have been indoctrinated into believing that function-based 
programming is the only good way to program REMs. I argue that this is not true. 


3



Function-based programming is a convenient approach when you want to 
compute equations, i.e. using REMs as calculators. Function-based 
programming, though, is not so convenient when you want to do other things. 


For example, observe the mess that "callbacks" produced. Observe the 
complexity of the concepts of “promises”, “futures”, “monads”, etc. that arise 
when function-based programming is stretched beyond its sweet spot to describe 
actions that mathematical notation was not designed for, i.e. anything involving 
time, like servers, Flash, DAWs, control theory, etc.


The fact that you can express time-based concepts in textual, mathematical 
notation does not mean that you should use mathematical notation for these 
concepts. It may be convenient for mathematicians to manipulate these concepts 
on papyrus, but, that does not mean that this notation should be forced onto the 
act of programming hardware. In analogy, we know the atomic and molecular 
structure of plastics, but, factories that extrude plastics into practical end-user 
products don’t directly deal with low-level concepts like the atomic and molecular 
structure of the plastics used in their products.


What is needed

We need research in ways of plumbing disparate notations - paradigms - together 
to produce programs for reprogrammable electronic machines.


We’ve already been exposed to various attempts in these directions


• UNIX pipes


• networking protocols


• The admiration of Christopher Alexander’s “Pattern Language” .
2

We’ve been over-emphasizing research into only a single notation, i.e. function-
based programming that attempts to fake out mathematical notation on REMs.


We need more kinds of notations and more ways to join them together into final 
programs.


 without the understanding of deep, underlying assumptions about fully isolated parts2

4



Somewhat ironically, we already hold in our hands the technologies that would 
allow us to completely isolate blocks of code - closures and FIFOs - but, due to 
our over-emphasis on function-based thinking, we diminish the full range of 
possibilities that come from these technologies.  

5



Appendix - See Also

6

See Also 
References https://guitarvydas.github.io/2024/01/06/References.html 
Blog https://guitarvydas.github.io/ 
Blog https://publish.obsidian.md/programmingsimplicity 
Videos https://www.youtube.com/@programmingsimplicity2980 
[see playlist “programming simplicity”] 
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join) 
X (Twitter) @paul_tarvydas 
More writing (WIP): https://leanpub.com/u/paul-tarvydas 

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	Choose Your Weapon
	What else might you want to do with REMs?
	Use both (or more) notations where appropriate
	Best of all worlds
	Observation
	What is needed
	Appendix - See Also

